EPQB EPQB - Pós-Graduação em Engenharia de Processos Químicos e Bioquímicos EPQB - Pós-Graduação em Engenharia de Processos Químicos e Bioquímicos da EQ/UFRJ EPQB - Programa de Pós-Graduação em Engenharia de Processos Químicos e Bioquímicos da EQ/UFRJ
Busca 
Intranet
Por favor, digite ou corrija o CPF!
Por favor, digite sua Senha!
Atenção: Os Candidatos aprovados para as turmas 2018/1 tanto de Mestrado quanto de Doutorado, que ainda não completaram seus dados, devem acessar a Intranet do EPQB para completar o cadastro, no período de 10/01/2018 a 17/01/2018. Só precisa preencher a opção Registro de Matrícula, subopções Dados Pessoais, Contato e Documentação.
Lembrar Senha
Por favor, digite ou corrija o E-Mail!
This is an example of a HTML caption with a link.
Formulário de Busca
×

Páginas dos Livros nos Sites das Editoras

Ver Legenda   Página Existente
  Página não encontrada

  1. A Aprendizagem Tecnológica no Brasil
  2. Análise Térmica de Materiais
  3. Aproveitamento Energético e Caracterização de Resíduos de Biomassa
  4. Biocatálise e Biotransformação
  5. Biocombustíveis no Brasil
  6. Biomassa para Química Verde
  7. Chemistry Beyond Chlorine
  8. Compositional Grading in Oil and Gas Reservoirs
  9. Controle e Monitoramento de Poluentes Atmosféricos
  10. Dinâmica, Controle e Instrumentação de Processos
  11. Economia da Energia
  12. Engenharia de Processos
  13. Gestão em Biotecnologia
  14. Glycerol - A Versatile Renewable Feedstock for the Chemical Industry
  15. Handbook of Fruit and Vegetable Flavors
  16. Inovação - O Combustível do Futuro
  17. Mapeamento Tecnológico de Polímeros Furânicos
  18. Modelagem Composicional de Frações de Petróleo - Vol. 1: Hidrocraqueamento de Frações Pesadas
  19. Modelagem Composicional de Frações de Petróleo - Vol. 2: Hidrotratamento de Destilados
  20. Modelagem e Controle na Produção de Petróleo
  21. Monoethylene Glycol as Hydrate Inhibitor in Offshore Natural Gas Processing
  22. Olefinas Leves - Tecnologia, Mercado e Aspectos Econômicos
  23. Oportunidades em Medicamentos Genéricos
  24. Panorama e Perspectivas da Estocagem Geológica de Gás Natural
  25. Patenteamento & Prospecção Tecnológica no Setor Farmacêutico
  26. Planejamento de Experimentos usando o Statistica
  27. Potencialidades do Cajueiro
  28. Processos Inorgânicos
  29. Reologia e Reometria - Fundamentos Teóricos e Práticos
  30. Reúso de Água em Processos Químicos
  31. Setores da Indústria Química Orgânica
  32. Technology Roadmap
  33. Tecnologia do Hidrogênio
  34. Tecnologia Enzimática
  35. Tecnologias de Produção de Biodiesel
  36. Technological Trends in the Pharmaceutical Industry
  37. Tendências Tecnológicas no Setor Farmacêutico
×

Teses de Doutorado Defendidas: 2012

Estratégias de Processamento Verde de Saponinas da Biodiversidade Brasileira

Autor: Bernardo Dias Ribeiro.
Orientadores: Maria Alice Zarur Coelho e Daniel Weingart Barreto.

Resumo

Saponinas, glicosídeos amplamente distribuídos na natureza, incluem um grupo diverso de compostos caracterizados por sua estrutura triterpênica ou esteroidal e um ou mais açúcares a esta ligada através de glicosilações. Sua diversidade estrutural é refletida por suas propriedades físico-quimicas (formação de espuma, emulsificação, solubilização, adoçante, amargor) e biológicas (hemolítico, antimicrobiano, molusquicida, inseticida, ictiocida), que são exploradas em várias aplicações nas indústrias alimentícia, cosmética e farmacêutica e também em biorremediação de solos. Algumas plantas, como Quillaja saponaria e Yucca schidigera, são exploradas comercialmente para extração de saponinas, utilizadas na emulsificação de bebidas ou em síntese de drogas esteroidais. As duas plantas, porém, não são brasileiras: a Quillaja saponaria é nativa do Chile e a Yucca schidigera, do Mexico.

Os objetivos desta tese consistem na busca por matérias-primas vegetais oriundas da agrobiodiversidade brasileira que possuam saponinas com potencial de aproveitamento econômico. Para isso, duas plantas, no máximo, serão selecionadas pela comparação das suas propriedades fisico-químicas e antimicrobianas, e estas serão caracterizadas e utilizadas como matéria-prima para o estudo e desenvolvimento de métodos de extração e concentração verdes das saponinas. Posteriormente, serão realizados testes de aplicação das saponinas como ativador e/ou inibidor enzimático para uso em alimentos e/ou cosméticos.

Das 38 plantas avaliadas por critérios tais como teor de saponinas e seus respectivos índices de emulsificação, tensão superficial, atividade antimicrobiana, além da sua sustentabilidade, duas foram escolhidas: juá e sisal. Com isso, foi realizada a caracterização destas saponinas, determinando suas concentrações micelares críticas (CMCs), 1,11 e 0,54 g/L, respectivamente, e avaliando a sua variação pela influência de pH, temperatura e concentração de NaCl; atividade antioxidante, complexação com colesterol e composição das saponinas por espectrometria de massas. Foram testados métodos de extração com etanol 30%, líquidos iônicos, solventes eutéticos, além da extração micelar com Triton X-100 e com auxilio de ultrassom. Destes métodos, a extração micelar tendo como condições em relação as saponinas de juá: 38,8°C; 1 h; 0,272 (relação juá/solvente), 300 rpm, 15% Triton; e em relação as saponinas de sisal: 50°C; 4 h; 0,166 (relação sisal/solvente), 200 rpm, 7,5% Triton, obteve recuperações de 90,8 e 98,4%, respectivamente, sendo o método escolhido para concentração por ponto de névoa. A extração orbital simples, com mais 2 reextrações, em condições similares, foi mantida para estudo dos métodos de concentração por coluna de espuma e separação por membranas.

Dentre os métodos de concentração estudados, o de ponto de névoa obteve a maior seletividade, com uso de carbonato de sódio 20% para a separação bifásica, e Amberlite FPX-66 em condições diferentes para as saponinas de juá (46,8°C e 25,1%) e de sisal (40,8°C e 25,4%) durante 30 min para remoção do Triton, tendo como fatores de concentração 10,6 e 6,6, respectivamente. Com os testes de alteração de atividade enzimática, hidrólise s síntese, as saponinas podem ser aplicadas em alimentos ricos em proteínas, favorecendo a produção de hidrolisados protéicos; aditivo para hidrólise de materiais amiláceos; auxiliar na síntese de ésteres de cadeia curta; fármacos antiobesidade e ativos cosméticos antiaging.